Dose Response

COMMENTARY: ETHICAL ISSUES OF CURRENT HEALTH-PROTECTION POLICIES ON LOW-DOSE IONIZING RADIATION

Journal:	Dose Response
Manuscript ID:	Draft
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Socol, Yehoshua; Falcon Analytics, Dobrzyński, Ludwik; National Centre for Nuclear Research, Department of Training and Consulting Doss, Mohan; Fox Chase Cancer Center, Diagnostic Imaging Feinendegen, Ludwig; Heinrich-Heine University, Janiak, Marek; Military Institute of Hygiene and Epidemiology, Department of Radiobiology and Radiation Protection Miller, Mark; Sandia National Laboratories, Sanders, Charles; Independent consultant, Scott, Bobby; Lovelace Respiratory Research Institute, Ulsh, Brant; M.H. Chew & Associates, Vaiserman, Alexander; Institute of Gerontology,
Keywords:	low-dose radiation, risk, hormesis, adaptive response

SCHOLARONE™ Manuscripts

1 COMMENTARY: ETHICAL ISSUES OF CURRENT HEALTH-

2 PROTECTION POLICIES ON LOW-DOSE IONIZING RADIATION

3		
4	Yehoshua Socol	Academic Forum for Nuclear Awareness, POB 3067
5		Karney Shomron, Israel
6	phone +972-9-50-661-9622,	e-mail socol@FalconAnalytics.com
7	Ludwik Dobrzyński	National Center for Nuclear Research, Andrzeja Sołtana
8		7, 05-400 Otwock, Świerk, Poland
9	Mohan Doss	Fox Chase Cancer Center, Philadelphia, PA 19111,
10		USA
11	Ludwig E. Feinendegen	Heinrich-Heine University, 40204 Düsseldorf, Germany
12	Marek K. Janiak	Military Institute of Hygiene and Epidemiology, 4
13		Kozielska St., 01-163 Warsaw, Poland
14	Mark L. Miller	Sandia National Laboratories PO Box 5800, MS-0729
15		Albuquerque, NM 87185, USA
16	Charles L. Sanders	2030 New Hampshire Street Loveland, CO 80538, USA
17	Bobby R. Scott	Lovelace Respiratory Research Institute, 2425
18		Ridgecrest Drive SE, Albuquerque, NM 87108, USA,
19	Brant Ulsh	M.H. Chew & Associates, 897 Baccarat Drive,
20		Cincinnati, OH 45245, USA
21	Alexander Vaiserman	Institute of Gerontology, Vyshgorodskaya 67, Kiev
22		04114, Ukraine
23		

Running Head: Ethical issues of current policies

1 **ABSTRACT**

2	The linear no-threshold (LNT) model of ionizing-radiation-induced cancer is
3	based on the assumption that every radiation dose increment constitutes increased
4	cancer risk for humans. The risk is hypothesized to increase linearly as the total
5	dose increases. While this model is the basis for radiation safety regulations, its
6	scientific validity has been questioned and debated for many decades. The recent
7	memorandum of the International Commission on Radiological Protection admits
8	that the LNT-model predictions at low doses are "speculative, unproven,
9	undetectable and 'phantom'." Moreover, numerous experimental, ecological, and
10	epidemiological studies show that low doses of sparsely-ionizing or sparsely-
11	ionizing plus highly-ionizing radiation may be beneficial to human health
12	(hormesis/adaptive response). The present LNT-model-based regulations impose
13	excessive costs on the society. For example, the median-cost medical program is
14	5000 times more cost-efficient in saving lives than controlling radiation
15	emissions. There are also lives lost: e.g., following Fukushima accident, more
16	than 1000 disaster-related yet non-radiogenic premature deaths were officially
17	registered among the population evacuated due to radiation concerns. Additional
18	negative impacts of LNT-model-inspired radiophobia include: refusal of some
19	patients to undergo potentially life-saving medical imaging; discouragement of
20	the study of low-dose radiation therapies; motivation for radiological terrorism
21	and promotion of nuclear proliferation.
22	
23	Key Words: low-dose radiation, risk, hormesis, adaptive response
24	

1	With the linear no-threshold (LNT) model of radiation-induced cancers it is
2	assumed that each ionizing radiation dose increment, no matter how small, constitutes
3	an increase in the cancer risk to humans. The risk is assumed to increase linearly as
4	total dose increases, with an adjustment made to the slope of the dose-response curve
5	for the reduced risk at lower dose rates. Typically, the slope is scaled down by a
6	factor of 2 for very low dose rates (e.g. for Fukushima down-winders) in comparison
7	to the slope for high dose rates (e.g. Hiroshima and Nagasaki).
8	Where mixtures of different radiations are involved (e.g., alpha, beta, and
9	gamma), special radiation weighting factors (RWFs) are used to obtain a weighted
10	dose named equivalent dose. RWF values are based on relative biological
11	effectiveness (RBE) and vary from 1 (X, beta, gamma) to 20 (alpha). The RBE values
12	come from animal and in vitro studies and vary a lot for different conditions. Where
13	different organs are involved, tissue weighting factors are also used, which relate to
14	differing tissue sensitivities; the resulting overall dose assigned to an individual
15	applies to the whole body and is called effective dose. Effective dose has the
16	following property: if e.g., only the lung is irradiated and the risk of lung cancer is
17	0.01, then the effective dose is the hypothetical uniform gamma-ray dose to the total
18	body that results in the same risk (0.01) of cancer, when all cancer types are
19	considered. The partitioning of the risk between cancer types is based on LNT and
20	assigned uncertain tissue weighting factors.
21	Both equivalent dose and effective dose are expressed in units of sievert (Sv).
22	Small effective doses on average (e.g., $0.1 \text{ mSv} = 0.0001 \text{ Sv}$) to each member of a
23	large population (e.g., 1 million persons downwind of Fukushima) are added to obtain
24	a large collective dose (e.g., 0.1 millisievert \times 1 million persons = $100,000$ person-
25	millisieverts), a hypothetical value which is then multiplied by a risk coefficient to

1	predict hypothetical cancer cases or cancer deaths for the population. It is important to
2	recognize that the risk coefficient makes sense and both equivalent dose and effective
3	dose are directly related to cancer risk only when dose-response relationships of
4	interest are of the LNT type. Thus, collective dose is a LNT-hypothesis-related
5	hypothetical value.
6	The LNT model in a more complex form (e.g., weighted average of absolute and
7	relative risk forms) is presently relied on for cancer risk assessment. The LNT model
8	is also relied on by regulatory agencies, and as such it has become the basis for
9	radiation safety regulations. Moreover, the LNT model is widely accepted by the
10	general public. However, the scientific validity of this model has never been proven
11	and has been seriously questioned and debated for many decades (Taylor 1980;
12	Feinendegen 1991; Jaworowski 1999; Tanooka 2001; Sakai et al. 2003; Scott 2008;
13	Tubiana et al. 2009; Cuttler 2010; Fornalski and Dobrzyński 2010; Sanders 2010;
14	Feinendegen et al. 2013). The absence of scientific consensus has always been
15	officially acknowledged, including by the US Congress Office of Technology
16	Assessment (OTA 1979). The recent memorandum of the ICRP (International
17	Commission on Radiological Protection) Task Group (Gonzalez et al. 2013) states
18	that:
19	
20	"While prudent for radiological protection, the LNT model is not
21	universally accepted as biological truth, and its influence and inappropriate use
22	to attribute health effects to low dose exposure situations is often ignored
23	Speculative, unproven, undetectable and 'phantom' numbers are obtained
24	by multiplying the nominal risk coefficients by an estimate of the collective dose
25	received by a huge number of individuals theoretically incurring very tiny doses

1	that are hypothesized from radioactive substances released into the
2	environment." (Highlights are by the authors).
3	
4	Thus, the Task Group of the ICRP, one of the main bodies promoting the LNT
5	model, admits that LNT predictions at low doses (up to 100 mSv) are "speculative,
6	unproven, undetectable and 'phantom'," raising the reasonable wonder how such a
7	model can be "prudent for radiological protection" and be justifiably used in low-
8	dose radiation risk assessment. The supporters of the LNT model claim that its use is
9	"conservative" and should be continued until the model is proven to be untrue. They
10	claim that in the field of safety every risk factor should be considered hazardous until
11	proven safe, like every firearm should be considered loaded until proven unloaded.
12	The case of radiation protection is quite different, as discussed below.
13	Numerous studies (experimental, epidemiological, and ecological) have shown
14	that low doses of ionizing radiation can be beneficial to health (Feinendegen et al.
15	2004; Jaworowski 2008; Tubiana et al. 2009; Sanders 2010; Thompson 2011). For
16	example, in an epidemiological study of cancer among nuclear industry workers, the
17	rate of cancer mortality (as well as overall mortality) among the workers was
18	substantially lower than in the reference population (Sponsler and Cameron 2005). In
19	an epidemiological study of lung cancer association with residential radon exposure,
20	low doses of radiation were found to prevent the occurrence of some lung cancers
21	(Thompson 2011). Also, the healing properties of radon from spas have been utilized
22	for centuries before people heard the word "radiation" and radon treatment is widely
23	accepted by both the medical community and patients in Europe (Erickson 2007).
24	Radon therapy is also popular in Japan and to a lesser extent in the United States. The
25	lack of popularity in the United States appears to relate at least in part to the claim by

- 1 the U. S. Environmental Protection Agency that residential radon causes thousands of
- 2 lung cancer deaths annually among U. S. citizens.
- The low-dose radiation benefits mentioned above and numerous others
- 4 (Mitsunobu et al. 2003; Boreham et al. 2007; Lacoste-Colin et al. 2007; Liu 2007;
- 5 Cohen 2008; Nakatsukasa et al. 2008; Scott 2008, 2011; Scott et al. 2008; Sanders
- 6 2010, Thompson 2011; Doss 2012; Sanders 2012; Scott and Dobrzyński 2012; Ulsh
- 7 2012; Calabrese 2013; Feinendegen et al. 2013; Nomura et al. 2013) comprise
- 8 emerging scientific support for the application of radiation hormesis/adaptive
- 9 response for a variety of health benefits.

- The present LNT-based regulations impose excessive costs to the society,
- effectively leading to loss, rather than saving, of life. For example:
 - According to the researchers from the Harvard School of Public Health
- 13 (Graham 1995), spending \$100,000,000 per year on controlling radiation
- emissions might save 1 life-year per year, if the LNT model were valid,
- while life-saving medical program median cost is \$19,000 per life-year
- saved. Another study concluded that costs of radiation protection are about
- 17 5000 times higher than the cost of protection of workers from all other and
- much more probable events (Inhaber 2001).
- At Chernobyl and Fukushima, compulsory relocation (ordered by the
- authorities on the basis of ICRP recommendations which are based on the
- 21 LNT model predictions) led to social destruction, which caused significant
- emotional/psychological problems and life-shortening. After Fukushima
- alone, more than 1000 non-radiogenic disaster-related premature deaths
- were officially registered among the evacuated population during the first
- year after the accident (Saji 2013). If not evacuated, these people would

Dose Response

1	have received low doses of radiation that would have led, according to the
2	LNT model, to shortening of life expectancy by less than one week (Socol
3	et al. 2013) - while even this estimation is "speculative, unproven,
4	undetectable and 'phantom'" according to the above-mentioned ICRP
5	Task Group memorandum.
6	
7	There are additional aspects of human cost because of the LNT model and the
8	associated radiophobia – an irrational fear of radiation hazards:
9	
10	• "Predictions of hypothetical cancer incidence and deaths cause some
11	patients and parents to refuse medical imaging procedures, placing them
12	at substantial risk by not receiving the clinical benefits of the prescribed
13	procedures" (AAPM 2011).
14	 Present policy significantly dissuades the study of low-dose radiation
15	therapies for beneficial effects in medicine, whereas animal studies have
16	shown potential for treatment of diseases for which presently no treatments
17	are available, e.g., treatment of Alzheimer's disease using low-dose
18	radiation (Wei et al. 2012).
19	• After Chernobyl, there were more than 100,000 unnecessary abortions of
20	pregnancies among females that received negligible radiation doses (or no
21	dose at all) associated with the reactor accident (Ketchum 1987).
22	• Finally, unrelated to medical treatment but related to ethics, radiophobia
23	contributes to motivating radiological terrorism and promoting nuclear
24	proliferation (Socol et al. 2013).
25	

1	In light of the above we suggest that the scientific community address these
2	questions:
3	1. Can the LNT model, whose predictions are "speculative, unproven,
4	undetectable and 'phantom'", be "prudent for radiological protection" and
5	"accurate for low-dose-risk estimation"?
6	2. Doesn't the high human cost of LNT-model-based policy necessitate
7	serious reconsideration of this policy?
8	3. Should the present approval procedure for using low-dose radiation in
9	medical research/treatment be eased in cases of cancer, autoimmune
10	disease, diabetes, bronchial asthma, Parkinson's, Alzheimer's and other
11	presently-incurable diseases associated with major suffering?
12	4. Should the medical community attend to debunking radiophobia by
13	explaining the evidence against the LNT model?
14	5. Should bio-medical research of low-dose radiation be given a priority in
15	order to resolve the existing controversy about negative/zero/positive
16	carcinogenic effect?
17	
18	Note: This paper is an adaptation of a letter recently submitted to the Israeli Bioethic
19	Commission by some of the authors (Yehoshua Socol, Ludwik Dobrzyński, Mohan
20	Doss, Ludwig E. Feinendegen, Marek K. Janiak, Charles L. Sanders, Brant Ulsh,
21	Alexander Vaiserman). All authors of this paper are members of Scientists for
22	Accurate Radiation Information (SARI) whose mission is to help prevent
23	unnecessary, radiation-phobia-related deaths, morbidity, and injuries associated wit
24	nuclear/radiological emergencies through countering phobia-promoting

- 1 misinformation spread by alarmists via the news and other media including journal
- 2 publications.

3

- **DISCLAIMER:** This paper represents the professional opinions of the authors, and 4
- 5 does not necessarily represent the views of their affiliated institutions.

1	REFERENCES
2	AAPM (American Association of Physicists in Medicine). 2011. AAPM Position
3	Statement on Radiation Risks from Medical Imaging Procedures, PP 25-A.
4	Available at: http://www.aapm.org/org/policies/details.asp?id=318&type=PP
5	Boreham DR, Dolling J-A, Somers C, Quinn J, and Mitchel REJ. 2006. The adaptive
6	response and protection against heritable mutations. Dose-Response 4:317-326
7	Calabrese EJ. 2013. Hormetic mechanisms. Critical Reviews in Toxicology
8	43(7):580–606
9	Cohen BL. 2008. The linear no-threshold theory of radiation carcinogenesis should be
10	rejected. J Am Physicians Surg 13(3):70-76
11	Cuttler JM. 2010. Commentary on using LNT for radiation protection and risk
12	assessment. Dose-Response 8(3):378–384
13	Doss M. 2012. Evidence supporting radiation hormesis in atomic bomb survivor
14	cancer mortality data. Dose-Response 10(4):644-663
15	Erickson BE. 2007. The therapeutic use of radon: a biomedical treatment in Europe;
16	an "alternative" remedy in the United States. Dose-Response 5:48-62
17	http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2477705
18	Feinendegen LE, 1991. Radiation risk of tissue late effect, a net consequence of
19	probabilities of various cellular responses. Europ. J. Nucl. Med. 18, 740-751
20	Feinendegen LE, Pollycove M, Sondhaus CA. 2004. Responses to low doses of
21	ionizing radiation in biological systems. Nonlinearity in Biol. Toxicol. Med. 2:
22	143-171
23	Feinendegen LE, Pollycove M, and Neumann RD. 2013. Hormesis by low dose
24	radiation effects: Low-dose cancer risk modeling must recognize up-regulation

1 of protection. In: Baum RP. (Ed.) Therapeutic Nuclear Medicine, Springer 2013, 2 500 p. ISBN 978-3-540-36718-5 3 Fornalski KW and Dobrzyński L. 2010. The healthy worker effect and nuclear 4 industry workers. Dose-Response 8:125–147 5 Gonzalez AJ, Akashi M, Boice JD, et al. 2013. Radiological protection issues arising 6 during and after the Fukushima nuclear reactor accident. J Radiol Pro 33:497– 7 571 8 Graham JD. 1995. Comparing Opportunities To Reduce Health Risks: Toxin Control, 9 Medicine and Injury Prevention. NCPA Policy Report No. 192, National Center 10 for Policy Analysis, Dallas TX. Available at: 11 http://www.ncpa.org/pdfs/st192.pdf 12 Inhaber H. 2001. Public and Occupational Risks of the Nevada (USA) Test Site. 13 Environmental Management, 28(4): 505–517 14 Jaworowski Z. 1999. Radiation risk and ethics. Physics Today (52):9 24-29 15 Jaworowski Z. 2008. The paradigm that failed. Int J Low Radiat 5(2):151–155 16 Ketchum LE. 1987. Lessons of Chernobyl: SNM members try to decontaminate the 17 world threatened by fallout. Newsline 28(6):933–941 18 Lacoste-Colin L, Jozan S, Cances-Lauwers V, Pipy B, Gasset G, Caratero C, et al. 19 2007. Effect of continuous irradiation with a very low dose of gamma rays on 20 lifespan and immune system in SJL mice prone to B-cell lymphoma. Radiat Res 21 168:725-732 22 Liu SZ. 2007. Cancer control related to stimulation of immunity by low-dose

radiation. Dose-Response 5:39-47

- 1 Mitsunobu F, Yamaok K, Hanamoto K, Kojima S, Hosaki Y, Ashida K, Sugita K, and
- 2 Tanizaki Y. 2003. Elevation of antioxidants enzymes in the clinical effects of
- 3 radon and thermal therapy for bronchial asthma. J Radiat Res 44:95–99
- 4 Nakatsukasa H, Tsukimoto M, Oshima Y, Tago F, Masada A, and Kojima S. 2008.
- 5 Suppressing effect of low dose gamma-ray irradiation on collagen-induced
- 6 arthritis. J Radiat Res 49:381–389
- 7 Nomura T, Sakai K, Ogata H, and Magay J. 2013. Prolongation of lifespan in
- 8 accelerated aging *klotho* mouse model by low-dose-rate continuous gamma
- 9 irradiation. Radiat Res 179:717 –724
- 10 OTA (Office of Technology Assessment). 1979. The Effects of Nuclear War. U.S.
- Government Printing Office, Washington, DC, 20402, p. 111. Available at:
- 12 http://www.fas.org/ota/reports/7906.pdf
- Saji G. 2013. A post-accident safety analysis report of the Fukushima accident. Future
- direction of the evacuation: lessons learned. Proceedings of the 21st
- 15 International Conference on Nuclear Engineering ICONE21 July 29 August 2,
- 16 2013, Chengdu, China ICONE21-16526.
- 17 Sakai K, Hoshi Y, Nomura T, Oda T, Iwasaki T, Fujita K, Yamada T, Tanooka H.
- 18 2003. Suppression of carcinogenic process in mice by chronic low dose rate
- 19 gamma-irradiation. Int J Low Radiat 1:142–146
- 20 Sanders CL. 2010. Radiation hormesis and the linear-no-threshold assumption. 1st ed.
- Heidelberg, Dordrecht, London, New York: Springer
- 22 Sanders CL. 2012. Potential treatment of inflammatory and proliferative diseases by
- 23 ultra-low doses of ionizing radiation. Dose-response 10(4):610–625
- 24 Scott BR. 2008. Low-dose risk extrapolation fallacy associated with the linear-no-
- 25 threshold model. Hum Exp Toxicol 27:163–168

1	Scott BR, Sanders CL, Mitchel REJ, and Boreham DR. 2008. CT scans may reduce
2	rather than increase the risk of cancer. Journal of American Physicians and
3	Surgeons. 13(1):8–11
4	Scott BR. 2011. Residential radon appears to prevent lung cancer. Dose-Response
5	9:444–464
6	Scott BR and Dobrzyński L. 2012. Special issue introduction. Dose-Response
7	10(4):462–466
8	Socol Y, Yanovskiy M, and Zatcovetsky I. 2013. Low-dose ionizing radiation:
9	scientific controversy, moral-ethical aspects and public choice. Int J of Nuclear
10	Governance, Economy and Ecology, 4:59-75
11	Sponsler R and Cameron JR. 2005. Nuclear shipyard worker study (1980–1988): a
12	large cohort exposed to low-dose-rate gamma radiation. Int J of Low Radiation
13	1: 463–478
14	Tanooka H. 2001. Threshold dose response in radiation carcinogenesis: an approach
15	for chronic beta-irradiation experiments and a review of non tumor doses. Int J
16	Radiat Biol 77:541–551
17	Taylor LS. 1980. Some non-scientific influences on radiation protection standards and
18	practice – the 1980 Sievert lecture. Health Phys. 39(6) 851–874
19	Thompson RE. 2011. Epidemiological evidence for possible radiation hormesis from
20	radon exposure: A case-control study conducted in Worcester, MA. Dose-
21	Response 9(1):59–75
22	Tubiana MF, Feinendegen LE, Yang C, and Kaminski JM. 2009. The linear no-
23	threshold relationship is inconsistent with radiation biologic and experimental
24	data. Radiology 251:13–22

- 1 Ulsh BA. 2012. The new radiobiology: returning to our roots. Dose-Response
- 2 10(4):593-609
- Wei LC, Ding YX, Liu YH, Duan L, Bai Y, Shi M and Chen LW. 2012. Low-dose
- 4 radiation stimulates Wnt/beta-catenin signaling, neural stem cell proliferation
- 5 and neurogenesis of the mouse hippocampus in vitro and in vivo. Curr
- 6 Alzheimer Res 9: 278–89

