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Dear Editor, 
I read with great interest the recent study by Tatsuzaki et al. [1], 
which focused on abnormal thyroid function among seven Fukushima 
Daiichi Nuclear Power Plant (FDNPP) accident victims (emergency 
nuclear workers) from more than 24 000 workers, who had internal 
radiation exposure due to intakes of radionuclides (mainly I-131). The 
indicated seven individuals (all men) were followed for 10 years after 
the accident and were thought to have received the highest committed 
equivalent radiation doses to the thyroid (3.2–12 Sv). According to 
the researchers, none of the workers had symptoms demonstrating 
abnormal thyroid function. However, there are plans for longer follow-
up of the seven workers. This letter intends to supplement the paper by 
Tatsuzaki et al. [1] by pointing out the need for a large epidemiologic 
study of thyroid cancer among the FDNPP workers and also pointing 
out biasing procedures (associated with poorly designed studies) to 
avoid. Including workers exposed to low radiation doses (e.g. 0–0.5 Sv) 
to the thyroid is recommended. 

It is important to avoid a poorly designed epidemiologic study of 
cancer risk, especially when considering low radiation doses. Poorly 
designed studies that relate to cancer risks for low radiation doses 
(e.g. see literature [2–5]) employ misinforming procedures that yield 
results that promote radiation-phobia-related harm [6]. Radiation 
phobia has already caused enormous societal losses for Japanese 
citizens following the FDNPP accident, related to the highly stressed 
elderly evacuees [6]. The phobia is linked to the unscientific linear no-
threshold (LNT) cancer risk model, whereby any amount of radiation, 
no matter how small, can cause cancer (e.g. thyroid cancer), and 
cancer risk increases linearly as radiation dose increases; however, 
extensive radiobiological data related to adaptive-response-associated, 
chemico-biological interactions in the body and their consequences 
essentially invalidate LNT as applied to cancer induction by ionizing 
radiation [7, 8]. 

Presently, justification for use of LNT in epidemiologic studies 
focused on low radiation doses is unfortunately based on misinforming 
procedures used that essentially guarantee an apparent LNT dose– 
response relationship for relative risk (RR) and related excess relative 
risk (ERR) for cancer induction (or cancer mortality) [6]. Some misin-
forming procedures employed by some epidemiologists are presented 
in Table 1 and elsewhere [6, 9]. A key misinforming procedure to 
avoid is using LNT as the null hypothesis (implied by using an LNT 
model and including high dose data [6, 9]), rather than assuming no 
radiogenic harm (e.g. for low doses). When LNT is considered the null 
hypothesis, uncertainty in RR and ERR is modeled to progressively 
vanishing as dose decreases toward the assigned zero dose group, with 
essentially no uncertainty about elevated risk remaining at a dose of 
1 nGy; with 1 nGy being treated as definitely harmful for someone in 
a very large population. This is permitted because uncertainty for the 
estimate RR = 1 for the zero-dose group (actually exposed to natural 
background radiation) is omitted [9]. Including this uncertainty can 
lead to results that support a threshold [9], as clarified in the next 
paragraph. For examples of intentionally and unscientifically vanishing 
existing uncertainty, see these LNT applications [2–5] by epidemiolo-
gists. Reviewers for at least one of the papers [3] appear to be unaware 
of the use of misinforming procedures by the researchers, as evidenced 
by reviewer comments available via the journal. 

The misleading nature of inappropriately vanishing risk uncertainty 
is reflected by the fact that absolute risk estimates, upon which RR 
and ERR estimates are based, have >0 uncertainties; thus, uncertainty 
should not vanish, even for the estimated RR = 1 for the assigned zero 
dose group [9]. The missing uncertainty can be evaluated by assuming 
a lognormal distribution of RR estimates or by using a binominal 
distribution of the cases count associated with absolute risk [9]. Both 
approaches would be expected to yield very similar results for the lower 
(L95) and upper (U95) 95% confidence interval values, respectively, 
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Table 1. Misinforming procedures used by some epidemiologists when trying to justify use of the LNT risk model for assessing 
cancer risk for low radiation doses [6, 9] 

Number Misinforming procedure 

1 For the supposedly un-irradiated group, assigning the estimate RR = 1 no uncertainty, even though the absolute risk used 
to evaluate RR has >0 uncertainty. 

2 Lagging the protracted exposure dose (i.e. discarding some of the dose) even when the dose is too small to likely cause any 
harm, thereby blaming each cancer on radiation exposure irrespective of the true cause. 

3 Treating the assigned unexposed group as having never been irradiated via natural background or other radiation sources. 
4 Including high-dose data to guarantee a positive slope to the forced fitted LNT line. 
5 Using dose groups with a wide range of doses, which can hide nonlinearity. Modern data analysis methods allow for 

individual data points to be used with risk replaced with a Bernoulli random variable (1 for cancer present; 0 for cancer 
absent), in which case individual-specific doses rather than dose groups can be used along with conditional logistic 
regression in modeling cancer risk. For an example of modern data analysis methods, see Thompson’s analysis of lung 
cancer probability related to radon inhalation in the home [10]. 

6 Using LNT for cancer induction as the null hypothesis rather than assuming no radiation harm (e.g. for low doses). 

associated with the estimated RR = 1. When evaluating ERR, adjust-
ment for the indicated missing uncertainty for RR = 1 for the assigned 
zero dose group needs to be performed, which unfortunately is seldom 
done [e.g. see literature 2, 5] by LNT-using epidemiologists. The cited 
reference [ 9] relates to alpha-radiation-caused lung cancer in humans. 
Making the needed adjustment can lead to results supportive of a 
population threshold (i.e. the greater than zero radiation dose needed 
to cause cancer of a specific type in the most radiosensitive member of a 
population). When only risk increases above the U95 were considered 
scientifically defendable ERR for lung cancer induction, a population 
threshold dose >20 mGy was implicated for alpha radiation [9]. Note 
that a 20 mGy absorbed dose corresponds to a 400 mSv equivalent 
dose. For doses below a population threshold, no cancers of the type of 
interest are induced by radiation in anyone in an irradiated population; 
however, the threshold likely differs for different populations, cancer 
types and radiation exposure scenarios [9]. 

The need to account for the missing risk uncertainty was apparently 
recognized by Tatsuzaki et al. [1] when discussing results of an epi-
demiologic study of thyroid cancer among Chernobyl liquidators [11]. 
Hopefully the information provided in this letter will help in designing 
additional studies of cancer risk associated with radiation exposures 
related to the FDNPP accident that do not by design promote more 
potentially harmful radiation phobia on top of what already exists in 
Japan [12]. Possibly, suggestive evidence for a population threshold for 
cancer induction will be found, as was the case for Chernobyl liquida-
tors, where no evidence of harm for doses <300 mGy to the thyroid 
were pointed out by Tatsuzaki et al. [1]. If so, it will be important 
to characterize the population threshold dose uncertainty, as has now 
been done for lung cancer among Mayak plutonium facility workers 
exposed internally to high-LET alpha radiation [9]. 

Unlike modern-science-devoid LNT theory, the notion of a popu-
lation dose threshold for cancer induction is consistent with modern 
radiobiology associated with radiation adaptive responses after low 
radiation doses and dose rates, as reviewed elsewhere [7, 8]. The 
multiple natural defenses enhanced by low radiation doses and dose 
rates that are linked to radiation adaptation in vivo are gifts of evolution 
that serve as barriers against cancer [7, 13]. Below the population 

threshold dose, these radiation adaptive responses can provide health 
benefits, including a significant reduction in cancer risks associated 
with exposure to other carcinogens [7, 13–15] and possibly reducing, 
for a period of time, the severity of some diseases including Alzheimer’s 
[16, 17]. 

It is quite important to be aware of the harm that radiation pho-
bia, linked to LNT theory, can cause for emergency nuclear workers 
exposed to I-131 and other radiation sources following the FDNPP 
accident. Hopefully, this letter will help prevent such avoidable harm 
from occurring. 
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